Cerebrospinal Fluid Leak Post-Nasopharyngeal Swab for COVID-19: Two Case Reports and Literature Review

Abdullah Abohimed¹, Bader Almanna¹, Abdulrahman Baashar¹, Naif Almontashiri², Ashraf Al Harthi³, Muhammad Ejaz Ahmed¹ and Makki Almuntashri¹

¹Department of Medical Imaging, King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard, Riyadh, Saudi Arabia
²Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia.
³Department of Neurology, King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard, Riyadh, Saudi Arabia.

Abstract
The Coronavirus disease 2019 (COVID-19) has had a global impact with devastating implications on the economic, social, educational, and medical fronts. Approximately, 100 million cases of COVID-19 have been diagnosed as of writing this paper [1]. Very few sampling adverse events were described in literature. In this article, we present two cases of traumatic cerebrospinal fluid (CSF) leakage post-nasal swab for COVID-19.

Keywords
Cerebrospinal fluid leakage, Coronavirus, Nasopharyngeal Swab, Idiopathic Intracranial Hypertension

List of abbreviations

Introduction
In confirming the diagnosis of COVID-19, two types of laboratory tests exist: molecular and antigen tests, to detect viral genome and proteins, respectively [2]. Nasopharyngeal swabs are the most widely performed method for collecting samples for the detection of COVID-19. Performing a proper nasal swab is crucial in the screening of Coronavirus infection and requires an intimate knowledge of nasal anatomy [3].

Case Report
First case:
A 45-year-old female patient with remote history of conservatively treated idiopathic intracranial hypertension (IIH) had undergone routine COVID-19
testing mid-December, 2020. Two days later, she presented to the emergency department with rhinorrhea, mild cough, and severe headache unrelieved by analgesia. A sample was taken from the clear nasal discharge and was found to be positive for glucose. A non-enhanced computed tomography (CT) scan revealed an opacified right sphenoid sinus without ominous surrounding lesion (Figure 1). A few days later, high resolution magnetic resonance imaging (MRI) including fluid-attenuated inversion recovery (FLAIR) and fast imaging employing steady-state acquisition (FIESTA) sequences confirmed CSF leak through skull base defect filling the sphenoid sinus. (Figure 2 and 3). Thin-cut paranasal sinus CT confirmed the osseous defect. (Figure 4). Incidentally, MRI also demonstrated features compatible with idiopathic intracranial hypertension (IIH).

Second case

A 36-year-old female patient, who lives in a rural town, regularly follows up with Obstetrics and Gynecology for her infertility, presented to our hospital for a regular follow-up for

Figure 1: Axial non-enhanced CT scan of the head demonstrates asymmetrical opacification of the right-side of the sphenoid sinus (white arrow).

Figure 3: Coronal T2-FIESTA MRI of the brain shows clear defect through the planum sphenoidale (white arrow).

Figure 2A: Axial T2-FLAIR and Figure 2B: T2-weighted MRI of the brain demonstrate fluid within the right-side of the sphenoid sinus that is high signal on T2WI (red arrow) and a low signal on T2-FLAIR (white arrow), consistent with CSF.
Cerebrospinal Fluid Leak Post-Nasopharyngeal Swab for COVID-19: Two Case Reports and Literature Review

Abohimed et al.

which she had to be screened for COVID-19. Ten days later, she presented to our emergency department complaining of headaches and clear nasal discharge. She noted that her nasal swab was extremely painful. Her past medical history was remarkable for chronic headaches. An MRI back in 2018 showing classic radiologic signs of IIH (Figure 5). \(\beta\)-2 transferrin testing from the right nasal cavity confirmed the presence of CSF. CT scan of the head showed opacification of the posterior ethmoid and right sphenoid sinuses, as well as bony defect along the cribiform plate of ethmoid (Figure 6 and 7).

Discussion

The literature regarding complications of nasopharyngeal swab is scarce. A few adverse events were observed according to a large cohort from northern Germany where a total of 11,476 deep nasal and oropharyngeal swabs were tested [4]. There are
limited reports of traumatic CSF leak post COVID-19 nasopharyngeal swab in the literature. The first case was reported by Sullivan et al. [5] It was postulated since their patient had a preexisting defect through the fovea ethmoidalis, associated with an encephalocele, the swab itself most likely injured the encephalocele as opposed to violating the skull base. [5] Another reports showed preexisting encephalocele and congenital meningocele which happened to be prone to mucosal damage surrounding the herniated brain tissue causing traumatic CSF leak when the nasal swab was inserted incorrectly. [6, 7] Two cases, however, had no radiological preexisting bony defect prior to the swab. The tip had violated the skull which resulted in projection of an encephalocele. [8, 9] Two papers showed direct injury to the cribiform plate without history of IIH or known preexisting bony defect without post-swab brain herniation [10, 11]. In this paper, we present two cases of traumatic CSF leak post-nasal swab for COVID-19. Persistent pulsatile CSF in the setting of IIH is suggested to remodel and erode the thin bones at the base of the skull. [12] The causal relationship between IIH and spontaneous CSF leak is well established in the literature [13]. Both of our patients have known history of IIH. Furthermore, the visualized skull base defects were not apparent on previous imaging. Therefore, we hypothesize that the nasal swab itself may have injured the skull base and resulted in traumatic CSF leakage.

Conclusion

We present two additional cases of traumatic CSF leak post-nasal swab for COVID-19. Our report further highlights the expected radiological findings and the clinical importance of acquiring an accurate and thorough history from the patient prior to performing nasal swabs as a prerequisite. Alternative methods including oropharyngeal swab should be considered in patients with signs and symptoms of IIH and known preexisting skull base defects. We believe reporting post-nasopharyngeal swab complications will improve sampling technique practice.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgement

None.

References